Co-grinding significance for calcium carbonate-calcium phosphate mixed cement. Part I: effect of particle size and mixing on solid phase reactivity.

نویسندگان

  • S Tadier
  • N Le Bolay
  • C Rey
  • C Combes
چکیده

In part I of this study we aim to evaluate and control the characteristics of the powders constituting the solid phase of a vaterite CaCO(3)-dicalcium phosphate dihydrate cement using a co-grinding process and to determine their impact on cement setting ability. An original methodology involving complementary analytical techniques was implemented to thoroughly investigate the grinding mechanism of separated or mixed reactive powders and the effects on solid phase reactivity. We showed that the association of both reactive powders during co-grinding improves the efficiency of this process in terms of the particle size decrease, thus making co-grinding adaptable to industrial development of the cement. For the first time the usefulness of horizontal attenuated total reflection Fourier transform infrared spectroscopy to follow the chemical setting reaction at 37°C in real time has been demonstrated. We point out the antagonist effects that co-grinding can have on cement setting: the setting time is halved; however, progress of the chemical reaction involving dissolution-reprecipitation is delayed by 30 min, probably due to the increased contact area between the reactive powders, limiting their hydration. More generally, we can take advantage of the co-grinding process to control powder mixing, size and reactivity and this original analytical methodology to better understand its effect on the phenomena involved during powder processing and cement setting, which is decisive for the development of multi-component cements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CALCIUM PHOSPHATE CEMENT: STUDY OF (BETA-TRICALCIUM PHOSPHATE, DICALCIUM PHOSPHATE AND CALCIUM CARBONATE SYSTEM

Calcium phosphate cements (CPCs), using B-tricalcium phosphate (ß-TCP, Ca3 (P04)2), dicalcium phosphate (DCP, CaHP04), calcium carbonate (Ca CO3), and hydroxylapatite (HAp, Ca10(P04)6(OH)2) as powder cement and disodium hydrogen phosphate (Na2HP04) solution as liquid component were prepared. After mixing the powder and liquid constituents, injectable and self-setting calcium phosphate cements (...

متن کامل

Effect of powder grinding on hydroxyapatite formation in a polymeric calcium phosphate cement prepared from tetracalcium phosphate and poly(methyl vinyl ether-maleic acid).

The primary aim of this study was to determine if cements based on poly(methyl vinyl ether-maleic acid) (PMVE-Ma) and tetracalcium phosphate resulted in hydroxyapatite formation. In addition, the mechanical strength of this type of polymeric calcium phosphate cement was evaluated. Cements were prepared by mixing, in a powder/liquid mass ratio of 3.0, an aqueous solution of PMVE-Ma (mass fractio...

متن کامل

Preparation, physical-chemical characterisation and cytocompatibility of calcium carbonate cements.

The feasibility of calcium carbonate cements involving the recrystallisation of metastable calcium carbonate varieties has been demonstrated. Calcium carbonate cement compositions presented in this paper can be prepared straightforwardly by simply mixing water (liquid phase) with two calcium carbonate phases (solid phase) which can be easily obtained by precipitation. An original cement composi...

متن کامل

Investigation of Macroporous Calcium Phosphate Cement Obtained by Foamed Gelatin Polymer

This study deals with the effect of gelatin on physical and mechanical properties of  calcium phosphate bone cements. The mixture of tetracalcium phosphate (TTCP) and dicalcium phosphate (DCPA) as the cement powder was mixed with 6 wt% Na2HPO4 solution containing different amount (0, 2, 5 and 8% in w/w) of foamed gelatin as liquid phase. The physical properties were determined in the terms of s...

متن کامل

Calcium carbonate-calcium phosphate mixed cement compositions for bone reconstruction.

The feasibility of making calcium carbonate-calcium phosphate (CaCO(3)-CaP) mixed cements, comprising at least 40% (w/w) CaCO(3) in the dry powder ingredients, has been demonstrated. Several original cement compositions were obtained by mixing metastable crystalline CaCO(3) phases with metastable amorphous or crystalline CaP powders in aqueous medium. The cements set within at most 1 h at 37 de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta biomaterialia

دوره 7 4  شماره 

صفحات  -

تاریخ انتشار 2011